
Error-Bounding in Level-Index ComputerArithmeticD. W. Lozier and P. R. TurnerAbstract. This paper proposes the use of level-index (LI) and symmetriclevel-index (SLI) computer arithmetic for practical computation with errorbounds. Comparisons are made with oating-point and several advantages areidenti�ed.1 IntroductionAny approach to the general problem of assessing the total error in the outputof computer programs depends on a detailed understanding of the computerarithmetic. The �nite precision of the arithmetic gives rise to rounding errorsthat can be an important component of the total error. Accordingly, muche�ort has gone into re�ning the algorithms and circuitry that carry out oating-point arithmetic. One goal of this e�ort has been to minimize rounding errors.Another was to ensure that exceptional conditions, such as underow andoverow, are detected and reported because their occurrence can completelyinvalidate the results of a computation. The present state of oating-pointhardware design [5] is close to optimal, and so the question arises: Is there aradically di�erent system of arithmetic with properties that are superior?An answer, proposed a little more than ten years ago [1] and known as level-index arithmetic, is based on representing positive numbers by generalized log-arithms. These representations are obtained by repeatedly taking logarithmsuntil a result between zero and unity, the index, is obtained. The correspond-ing level is the number of times the logarithm was taken. The level (an integer)and the index (a fraction) are added and stored in a �xed-point location as theinternal representation of real positive numbers. This describes the unsymmet-ric form of level-index arithmetic. There is also a symmetric form [3] in which,e�ectively, real numbers less than unity in magnitude are reciprocated beforebeing stored.The main purpose of this paper is to compare the new arithmetic againstthe old, particularly in regard to interval arithmetic and other error-bounding



2 D. W. Lozier and P. R. Turnertechniques. Among the advantages will be (i) an immunity to extraneous con-siderations necessitated by underow and overow; (ii) a uni�ed error analysisthat naturally blends absolute errors, relative errors, and higher-order gener-alized errors; and (iii) a natural means for increasing precision when neededwithin an algorithm.The representation of real numbers in a computer is based on a mapping ofthe form X 2 S � R �! x 2 Tw � R (1)where S and Tw are subsets of the real numbers. Tw is a �nite subset associatedwith computer words of length w bits. Elements of Tw are called internalnumbers, those of S external numbers. Usually S is a �nite interval such as(�M;M) or (M�1;M).To be useful in representing external numbers, the mapping should be invert-ible but of course this is possible only in an approximate sense. Accordingly,suppose that x = ~f(X) (2)where ~f is an approximation to a continuous real function f that is invertiblewith inverse function g. Then we de�ne the generalized error functiongenerr(X; ~X) = jf(X)� f( ~X)j (3)where ~X = g(x) (4)is our external approximation to X .Commonly used representations are �xed-point, logarithmic and oating-point.The �xed-point representation function is the identity. In this case ~X = x and,assuming S = (�1; 1), x is obtained by rounding the binary expansion of X tow � 1 bits (one bit is needed for the sign of X). The generalized error is justthe absolute error, and the inequalitygenerr(X; ~X) = jX � ~X j � 2�w (5)is satis�ed.For the binary logarithmic representation on S = (M�1;M) with M = 22m ,f is the binary logarithm and x = ~f(X) is log2X rounded to w �m � 2 bits.Then generr(X; ~X) = j log2X � log2 ~Xj � 2m+1�w (6)



Error-Bounding in Level-Index Computer Arithmetic 3where ~X = 2x. Sincelog2X � log2 ~X = log2f1 + (X � ~X)= ~Xg (7)and similarly for log2 ~X � log2X , the generalized error is, to within terms of�rst order, just the relative error times 1= ln 2 = 1:44 � � �. It may be noted incomparison to �xed-point that an additional sign bit is needed and that therepresentation of zero is special.Floating-point may be viewed as a modi�cation of the logarithmic representa-tion. Suppose X 2 (M�1;M) and writelog2X = c(X) + log2f1 + �(X)g (8)where c(X) is the unique integer determined by the condition �(X) 2 [0; 1).Here �(X) is the fractional part of the oating-point signi�cand and 2c(X) isthe scale factor. The representation function is not so readily expressed as forthe logarithmic representation, since the signs of c(X) and �(X) are oppositewhen X < 1. In e�ect, it is taken as f(X) = �(X) with separate accountingfor c(X). The internal approximation x is �(X) rounded to w �m � 2 bits,and in the usual case when c(X) = c( ~X),generr(X; ~X) = j�(X)� �( ~X)j � 2m+1�w : (9)For IEEE arithmetic in single and double precision, m = 7 and m = 10,respectively.2 The Level-Index RepresentationThe generalized logarithm is, by de�nition, the function (t) = 8><>: t if 0 � t � 1,1 +  (ln t) if t � 1,� (�t) if t < 0: (10)This function is invertible and its inverse function is given by�(t) = 8><>: t if 0 � t � 1,e�(t�1) if t � 1,��(�t) if t < 0: (11)



4 D. W. Lozier and P. R. TurnerBoth  and � are strictly increasing, continuous, and continuously di�eren-tiable on R. If t � 1,  (t) is obtained by repeatedly taking logarithms untilln(`) t = ln ln � � � ln t 2 [0; 1). Then  (t) = `+ln(`) t. By de�nition, ` is the leveland ln(`) t is the index of t. For the inverse function, if t = ` + a � 1 where `is the integer part of t, then �(t) = exp(`)(a).For level-index, or LI, computer arithmetic we take S = (��(8); �(8)) andx = ~ (X) where x is obtained by rounding the binary expansion of  (X) tow � 4 bits. The following table supports this choice of S:x �(x) x �(x) x �(x)0 0 3 15:15 � � � 4:63 � � � 21024 � 103081 1 4 106:58��� 4:80 � � � 216384 � 1049322 2:72 � � � 4:40 � � � 2128 � 1038 4:99 � � � 25502841 � 101656520We see that x = 4:40 corresponds approximately to the IEEE standard overowthreshold in single precision (w = 32). Overow thresholds in double precision(w = 64) and quadruple precision (w = 128) are reached at x = 4:63 andx = 4:80, respectively. Allocating 3 bits to the level and w � 4 to the index(the remaining bit is the sign bit) allows us to represent numbers in the vastinterval (��(8); �(8)). Indeed, �(6) is already so large that it is impractical toexpress it as a oating-point number.If restricted to the interval (�1; 1), LI arithmetic is equivalent to �xed-point.A symmetric modi�cation, called SLI arithmetic, is more analogous to oating-point. We take S = (M�1;M) where M = �(8). The representation functionbecomes 	(t) =  (ln t) = (  (t)� 1 if t � 1;1�  (1=t) if 0 < t < 1 (12)with inverse function �(t) = e�(x) = �(x+ 1): (13)Again, 3 bits are allocated to the level. With one bit each for the signs of Xand 	(X), w� 5 bits are allocated to the index.In [6] it is proved that LI and SLI arithmetic with 3 bits allocated to thelevel are both closed. That is, all sums, di�erences, products, and quotients,excluding division by zero, of numbers in Tw are elements of S, provided onlythat w does not exceed 5 million bits or so. Thus the rounded result of anarithmetic operation in Tw is again in Tw . In particular, this means that bothoverow and underow have been abolished for the basic arithmetic operations.



Error-Bounding in Level-Index Computer Arithmetic 5The generalized error for LI and SLI is de�ned by (3) and (4) with f , g replacedby  , � and 	, �, respectively:generr(X; ~X) = ( j (X)�  ( ~X)j � 23�w for LI,j	(X)�	( ~X)j � 24�w for SLI; (14)cf. (5), (6) and (9). At level 1, when 1 � X � e, the generalized error is therelative error in the external approximation (to within terms of �rst order).The behavior of relative error for X > e is the subject of the next section.3 Representation ErrorsFor a given computer arithmetic the generalized error is measured in the setTw of internal numbers: it is bounded uniformly by a small constant that de-pends on w. For �xed-point, logarithmic and oating-point arithmetics thegeneralized error has a familiar interpretation in the external set S: the num-ber of either `decimal places' (in �xed-point) or `signi�cant decimal digits' (inlogarithmic and oating-point) is uniformly bounded. There is no familiarinterpretation of generalized error for level-index arithmetic. Accordingly, acomparison in familiar terms is needed.Figure 1 presents a comparison of SLI against IEEE oating-point for w = 32and S = [1; 1045]. The horizontal scale is log10X for X 2 S. The vertical scale,�(X), is a measure of `signi�cant decimal digits' computed by evaluating theformula �(X) = � log10 X+ �XX (15)in double precision. Here the equations	(X+) = 	(X) + 2�27; �(X+) = �(X) + 2�23 (16)determine X+ and X .Figure 1 illustrates di�erences between 32-bit IEEE and SLI arithmetic. First,the IEEE curve exhibits oscillatory behavior not present in SLI. This is dueto the phenomenon [4]1 known as wobbling precision. The logarithmic curve,were it shown, would lie within the oscillatory band and would be essentiallyconstant. The SLI curve is smooth and gradually decreasing. Second, the1The phenomenon occurs for radix 2 as well as for higher oating-point radices, contraryto what is claimed in [4].



6 D. W. Lozier and P. R. Turner
0 5 10 15 20 25 30 35 40 45

0

1

2

3

4

5

6

7

8

log10  X

S
ig

n
if
ic

a
n

t 
D

e
c
im

a
l 
D

ig
it
s

Figure 1: Comparison of SLI againstIEEE for w = 32. 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

log10  X

S
ig

n
if
ic

a
n

t 
D

e
c
im

a
l 
D

ig
it
s

Figure 2: Comparison of SLI againstIEEE for w = 32; 64; 128.IEEE curve does not extend beyond the overow limit of 1038, approximately.Numbers beyond this limit have no IEEE representation other than a genericin�nity symbol, whereas SLI retains useful signi�cance far beyond the limit.Third, the two curves cross at approximately X = 2400. Before this point SLIhas more signi�cance, while beyond it IEEE does until it fails at the overowlimit.Figure 2 compares 32-, 64- and 128-bit IEEE2 and SLI over the range S =[1; 105000]. In the IEEE formats the overow limit is increased as w increasesby extending the width of the �eld that holds c(X); cf. (8). The �eld widths are8, 11 and 15 bits, respectively. Accordingly, as w increases the SLI index �eldgains more bits than the IEEE signi�cand �eld. This results in the crossoverpoint increasing from 2400 in the 32-bit format to approximately 1013 and 1097in the 64- and 128-bit formats, respectively. In computing applications thatinvolve numbers that lie mostly to the left of the crossover point, the relativeprecision of SLI should exceed IEEE.In the authors' experience instances are known where double precision is usedin practical computations not because single precision is too inaccurate but toavoid overow. In SLI overow (and underow) are impossible, so the precision2Strictly, the IEEE standard does not specify 128-bit formats. The format used here is aplausible extension that has been used in commercial computer products.



Error-Bounding in Level-Index Computer Arithmetic 7can be chosen solely on accuracy requirements. Another advantage is that the�eld for the level is always 3 bits. Without a clear mathematical criterion forsubdividing the oating-point word into its two constituent sub�elds, a varietyof inconsistent formats has emerged. This is still true even after widespreadadoption of the IEEE standard.4 Concluding RemarksThe active developers of LI and SLI are small in number but they have pro-duced a body of literature on algorithms, applications and error analyses someof which is contained in the 1989 survey [2]. This reference summarizes therecursive algorithms that are used to perform the basic LI and SLI arithmeticoperations in �xed-point arithmetic with a small number of guard digits. The1995 paper [7], which discusses present and planned software simulations, listsadditional references in its bibliography.LI and SLI possess several advantages compared to oating-point. Some ofthese have been introduced in this paper. Freedom from underow and over-ow is the greatest advantage. Error analysis in terms of generalized errorsmay appear to be an obstacle but it may have advantages, for example in ap-propriately measuring computational error in the neighborhood of a zero. Thispossibility will be taken up in a future paper. Finally, in contrast to oating-point, an increase or decrease in wordlength to accommodate changing needsfor precision is achieved naturally in LI and SLI.References[1] Clenshaw, C. W. and Olver, F. W. J.: Beyond oating point. J. Assoc.Comput. Mach. 31 (1984), 319{328.[2] Clenshaw, C. W.; Olver, F. W. J. and Turner, P. R.: Level-index arith-metic: An introductory survey.Numerical Analysis and Parallel Processing,Lecture Notes in Mathematics 1397 (P. R. Turner, ed). Berlin: Springer{Verlag 1989, 95{168.[3] Clenshaw, C. W. and Turner, P. R.: The symmetric level-index system.IMA J. Numer. Anal. 8 (1988), 517{526.



8 D. W. Lozier and P. R. Turner[4] Cody, Jr., W. J. and Waite, W.: Software Manual for the Elementary Func-tions. Englewood Cli�s, New Jersey: Prentice-Hall 1980.[5] IEEE: IEEE Standard for Binary Floating-Point Arithmetic. New York:The Institute of Electrical and Electronics Engineers, Inc., 1985.[6] Lozier, D. W. and Olver, F. W. J.: Closure and precision in level-indexarithmetic. SIAM J. Numer. Anal. 27 (1990), 1295{1304.[7] Lozier, D. W. and Turner, P. R.: Parallel and serial implementations ofSLI arithmetic. NIST Internal Report 5660. June 1995. 23 pages.Addresses:D. W. Lozier, Applied and Computational Mathematics Division, NationalInstitute of Standards and Technology, Gaithersburg, MD 20899, USA.P. R. Turner, Mathematics Department, United States Naval Academy, An-napolis, MD 21402, USA.


